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Summary
Nature's providences are rather the choicest remedies for human health and welfare. One such is

quercetin, which is nature's nominee for cancer cure and recently demonstrated against influenza

attack. Quercetin is highly recognized for its anticancer applications. This review emphasizes on

yet another gift that this compound has to offer for mankind, which is none other than combating

the deadly evasive influenza virus. The chemistry of this natural bioflavonoid and its derivatives

and its modus operandi against influenza virus is consolidated into this review. The advancements

and achievements made in the anti‐influenza clinical history are also documented. Further, the

challenges facing the progress of this compound to emerge as a predominant anti‐influenza drug

are discussed, and the future perspective for breaking its limitations through integration with

nanoplatforms is envisioned.
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1 | INTRODUCTION

Incidence of influenza A virus (IAV) outbreaks and seasonal pandemics

worldwide is seriously impacting public health, as well as the country's

economy. Of late, the one that is causing greater concern world over is

the H1N1 subtype of swine influenza lineages that are circulating

among humans. Its pandemic potential1,2 is a serious concern these

days. The highly pathogenic avian IAV (H5N1) causes acute respiratory

distress syndrome and multiorgan failure with approximately 60%

lethality3 with the first case of the disease being found in China4,5

and now widespread all over the world too. The reassorted IAV

(H7N9) is found leading to extrapulmonary complications, registering

a fatality rate of more than 34%.

The classification of different IAV subtypes has been based on the

2 surface glycoproteins, hemagglutinin (HA) and neuraminidase (NA).6
emagglutinin; NA, Neuraminidase;

Cytopathic effect; PA, Polymerase

cid; mRNA, Messenger ribonucleic

IG‐I, Retinoic acid inducible gene

F, Tumor necrosis factor; NOS2

etention.
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Genetic variation of IAVs has resulted from genetic drift and

genetic shift caused by selective pressure from the environment

or via host immune response, making it almost impossible to pro-

duce a timely and sufficiently effective vaccine to prevent epidemic

outbreaks.7,8 Consequently, development of novel strategies is the

need of hour to prevent further spread of IAV. Among all strategies,

formulation of anti‐influenza agents is the most effective interven-

tion control tool.

Based on drug target locations, 2 classes of anti‐influenza drugs

have been identified: one targeting the matrix 2 (M2) ion channel

and the other group targeting NA expressed on the viral envelope.

The M2 ion channel inhibitor drugs such as amantadine (trade name:

Symmetrel) and rimantadine (trade name: Flumadine) are only effec-

tive against type A virus. Matrix 2 inhibitors block the release and

migration of the virus ribonucleoprotein into the nucleus of the host
M2, Matrix 2; RNP, Ribonucleoprotein; NAI, Neuraminidase inhibitor; BBB, Brain

acidic protein; PB1, Polymerase basic protein 1; PB2, Polymerase basic protein 2;

acid; PAMP, Pathogen‐associated molecular pattern; PRR, Pattern recognition

‐I; NOD, Nucleotide oligomerization domain; NLRP3, NOD‐like receptor family

, Nitric oxide synthase 2; IL, Interleukin; Th‐2, T helper cell 2; ROS, Reactive
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cells.9 Currently, influenza A H3N2 and pandemic A (H1N1 pdm09)

viruses are reported to be resistant to M2 inhibitors as are many

H5N1 viruses.9 These drugs have also been vindicated as causatives

of neurological side effects and widespread drug resistance.10-12

Neuraminidase inhibitors (NAIs), such as oseltamivir (trade name:

Tamiflu) and zanamivir (trade name: Relenza), are already in use for

treatment and prevention of acute uncomplicated flu caused by

influenza A and B.13 The drug peramivir (trade name: Rapivab) is

the only available intravenous formulation amidst anti‐influenza

NAIs.14,15

Unfortunately, issues such as continually emerging NAI resistance

limit their further development and working efficacy and raise the

need to improvise. In addition, dual resistance to both oseltamivir

and amantadine has also been detected.12,13,16-22 Thus, with the

marketed drugs hitting a dead end, there is a strong need to explore

new antiviral drugs for anti‐influenza combat. Nature is said to be

the next possible resort and in this case a probable resort. Of the var-

ious natural remedies in highlight, quercetin is recently gaining para-

mount importance.
2 | QUERCETIN: SOURCE, CHEMISTRY,
AND APPLICATION

Quercetin (3,3′,4′,5‐7‐pentahydroxyflavone), belonging to the chemi-

cal family of the glycoside rutin, is a marked flavonoid, which belongs

to plant pigments that contribute towards the varied colors evident

in fruits, flowers, and vegetables. Drawing the attention of many

researchers around the world from the day Nobel Prize winner Albert

Szent‐Gyorgyi made his discovery of both vitamin C and flavonoids in

1937,23,24 quercetin has for the past 8 decades been under extensive

scientific scrutiny.

Of over 4000 naturally available plant phenolics,23-25 quercetin

is a rather unique one. The plant kingdom with a wide distribution

of quercetin‐type flavonols, primarily as quercetin glycosides, is the

most abundant of the flavonoid molecules. They are abounding in a

variety of foods such as onions, tomatoes, Brassica vegetables,

capers, apples, berries, black grapes, shallots, tea, as well as many

seeds, nuts, flowers, barks, and leaves. Their occurrence can right-

fully be termed abundant in nature. Quercetin is also present in

reputed medicinal plants, including Ginkgo biloba, Hypericum

perforatum (St John's wort), and Sambucus canadensis (elder).26-29

Table 1 gives an overview of the various quercetin derivatives, their

sources, and antiviral properties.

Flavonoid compounds are classified into 6 subclasses (Table 1).

and quercetin, categorized as a flavonol, is one among them. Flavo-

noids are a family of plant compounds that share a similar flavone

backbone (a 3‐ringed molecule with hydroxyl [OH] groups attached).

Numerous other substitutions are also possible, giving rise to many

subclasses of flavonoids with different compounds found within these

subclasses. Flavonoids also manifest either as glycosides (with

attached glycosyl groups) or as aglycones (without attached glycosyl

groups).30 Figure 1 elucidates the structure of few such predominant

quercetin derivatives. Flavonoids, such as quercetin, are basically anti-

oxidants. They can scavenge particles in the body known as free
radicals that damage cell membranes, tamper with DNA, and even go

to the extent of exterminating the cell. Making use of the inherent

property of antioxidants to neutralize free radicals, it can be extended

to prevent free radical damage. Although some of biological activities

of quercetin are highly related with their antioxidant property, there

is no concrete evidence to ascertain that all of the other biological

activities such as antiproliferative, antibacterial, anticancer, anti‐

inflammatory, neuroprotective, hepatoprotective, and antiviral activity

would be a result of quercetin's antioxidative effect. For instance,

some researchers have explained that high neuroprotective activity

has been detected in quercetin owing to their radical scavenging abil-

ity.31 However, quercetin as caspase activator especially on cancer

cells operates through inhibition of signal transducer and activator of

transcription 3 signaling.32 On the other hand, quercetin as an antimi-

crobial agent is operational through blocking of bacterial DNA poly-

merase, DNA binding, and DNA cleavage activity.33,34 Moreover, yet

another research has demonstrated that quercetin inhibited HIV‐1

interferase and thereby influenced viral replication and virion produc-

tion.35 Thus, the modus operandi of quercetin appears to be not nec-

essarily limited to or emerging from its antioxidant property The past

decades have thus proven quercetin's commendable biological activi-

ties that include antiproliferative,36 antioxidative,11,37 antibacterial,38

anticancer,39,40 anti‐inflammatory,41,42 neuroprotective,43 hepatopro-

tective,44 and antiviral45,46 effects.

The application of quercetin in pharmaceuticals is limited because

of its poor solubility and low bioavailability. However, absorption and

brain blood barrier permeability are higher in various forms of querce-

tin glucosides.31,47,48 Fortunately, natural quercetin derivatives such as

glycosides at various positions determine its absorption ability.48

Recently, it is reported that brain blood barrier permeability, absorp-

tion, and therapeutic effects of quercetin have been enhanced by

nanoencapsulation with biodegradable materials.31,47 Synthetic deriva-

tives of quercetin are also in play. The synthesis and antiviral activities

of various quercetin derivatives by substitution of C3, C3′, and C5

hydroxyl functions with various phenolic ester, alkoxy, and

aminoalkoxy moieties are being actively researched. Some researchers

have attempted to inhibit influenza virus infection using synthesized

quercetin derivatives. Among them, quercetin‐3‐gallate is reported to

show improved activity against influenza virus infection compared

with natural quercetin derivatives. Synthetic quercetin derivatives

include substituted derivatives, hybrid derivatives, and encapsulated

types. These synthetic derivatives are well accomplished for their

enhanced properties.45,49-54

In recent times, a number of reports on quercetin have

established that quercetin has the potent ability to inhibit influenza

virus infection through induction of the cellular antiviral immune

system, inhibiting viral mechanisms or viral particles at different

phases.11,55-57 Anti‐influenza targets such as viral glycoproteins (HA

and NA),58,59 viral M2 protein,60 and viral messenger RNA (mRNA)

replication61,62 are well known for anti‐influenza drug

development.59 Most significant is quercetin and quercetin

derivatives that exhibit promisingly stronger inhibitory activity

against influenza virus through all anti‐influenza targets. Figure 2

gives the scheme showing the mode of attack of quercetin and its

derivatives on influenza virus.
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FIGURE 1 Quercetin structure and illustration showing source and chemistry of its derivatives

FIGURE 2 Schematic showing the varied site of attack of various quercetin derivatives on influenza virus. IL, interleukin; IFN, interferon; mRNA,
messenger RNA; TNF, tumor necrosis factor
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3 | QUERCETIN VS INFLUENZA VIRUS:
MODUS OPERANDI

3.1 | Inhibiting influenza virus entry via blocking of
HA

In the viral replication cycle, stage 1 is virus entry; so prevention of

viral entry will be the first line of defense against viral infectivity, this

by itself is an attractive antiviral strategy.63,64 The influenza virus enve-

lope protein HA plays a critical role in facilitating viral entry.65 Firstly,
HA is responsible for the virus binding to the cell surface; the binding

of the virus to host cells leads to subsequent membrane fusion within

the late endosomes. Following binding, the virus is internalized by

endocytosis. Within the low‐pH (5.0‐5.5) environment of the endo-

some, HA undergoes conformational rearrangements. This results in

the exposure of the fusion peptide, which subsequently enters the

endosomal membrane of the host cells. The HA2 subunit in the stem

region leads to viral cell membrane fusion. After fusion, the viral ribo-

nucleic proteins are released into the cytosol and transported into

the nucleus, where replication occurs.63 It is now known that quercetin



FIGURE 3 Comparison between quercetin 7‐glucoside (green) and guanosine 3‐phosphate (blue) docked on cap‐binding domain of influenza virus
PB2 subunit of RNA‐dependent RNA polymerase (red colored residues indicate active site). GTP, guanosine triphosphate; PB2, polymerase basic
protein 2
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blocks influenza virus entry via influenza viral HA protein. Mechanistic

investigations revealed that quercetin engages in active interaction

with the HA2 subunit. Moreover, it has been established that querce-

tin is capable of inhibiting the entry of the H5N1 virus using the

pseudo virus‐based drug screening system.66
3.2 | Inhibiting influenza virus via blocking of NA

Most of the licensed and commercialized antiviral drugs against influ-

enza A and B mainly target the viral surface protein NA for inhibiting

viral infection in the human body.67 Neuraminidase activity leads to

the release of progeny virions from a host cell by cleaving terminal

sialic acid from glycoproteins on the host cell surface.68 The NA inhib-

itors inhibit release of newly formed virions from the host cell surface.9

By blocking of NA of influenza virus, the newly formed influenza viral

virions infected other noninfected cells.9 There are 2 NA inhibitors

licensed internationally for the treatment and inhibition of influenza

such as Relenza (zanamivir) and Tamiflu (oseltamivir).9 In addition,

lower clinical efficacy of oseltamivir has been reported in case of chil-

dren infected with influenza B than in those infected with influenza

A.69

Many research findings validate that the plant‐derived quercetin

and quercetin derivatives inhibited influenza virus infection through

NA inhibition pathway.67,68,70 Quercetin from a Chinese traditional

plant showed higher binding affinity to the active NA sites of A/PR/

8/34 (H1N1), and this was confirmed by in vitro and in vivo experi-

ments.58 That treatment of quercetin‐reduced influenza virus–induced

cytopathic effect was confirmed by computational studies showing

that the chemical structure of quercetin was able to suppress the NA

crystal structure in silico.58 Additionally, researchers identified that

quercetin and quercetin derivatives reduced lung damages such as lung

inflammation induced by influenza virus infection in vivo.46,58 More-

over, it increased survivalists and the lung index of quercetin‐treated

group was higher and more or less similar to the placebo and

normal.46,58
3.3 | Inhibiting influenza virus via blocking of viral
RNA polymerase

In modern practice, antiviral researchers propose influenza viral poly-

merase as a target for influenza drug development, since it is subject

to almost no significant structural and genetic change across different

influenza virus types and strains.61,71 RNA polymerase consists of PA,
PB1, and PB2 subunits, which play an important role in viral RNA syn-

thesis.72 This viral polymerase, using the well‐known “cap‐snatching”

mechanism, uses host pre‐mRNA as a primer for transcription of viral

mRNA. When host pre‐mRNA (7‐methylated guanosine triphosphate

[GTP] on 5′ end of host pre‐mRNA) is bound to PB2, it is cleaved by

the PA endonuclease subunit to the primer.73 Then the conserved

polymerase domain of PB1 with the assistance of that primer elon-

gates the viral mRNA transcription.61 Jassim and Naji57 reported some

flavonoids including quercetin and their derivatives to inhibit RNA

virus infections through blocking of viral polymerase.40 Moreover,

quercetin 3‐rhamnoside exerted stronger inhibitory activity on influ-

enza viral mRNA synthesis45 as proved by in vivo investigations.46 In

2016, another quercetin derivative known as quercetin 7‐glucoside

was reported as a blocker of influenza H1N1 virus polymerase via

occupying the binding site of 7‐methylated GTP on PB2 subunit by

RNA polymerase inhibition assay using molecular docking studies.11

Figure 3 gives the comparison between quercetin 7‐glucoside and

7‐methylated GTP on the PB2 subunit of RNA‐dependent RNA poly-

merase. However, till date, quercetin aglycone has not been confirmed

of its influenza viral polymerase blocker status.
3.4 | Quercetin impact on virus‐related immune
system in host cells

Influenza A virus infection leads to the recognition of pathogen‐associ-

ated molecular patterns by pattern recognition receptors that initiate

antiviral signaling cascades. This signaling results in the production of

interferons (IFNs), cytokines, and chemokines.74,75 Three main catego-

ries of pattern recognition receptors are involved in the recognition of

influenza A infection and the induction of an IFN response. These

include toll‐like receptors, retinoic acid inducible gene I receptors,

and nucleotide oligomerization domain–like receptor family pyrin

domain containing 3.76-78 All these pathways eventually result in the

transcription of proinflammatory cytokines, chemokines, and IFNs that

activate the antiviral response and the recruitment of neutrophils, acti-

vation of macrophages, and maturation of dendritic cells.74,75 Type I

IFNs include IFN‐α and IFN‐β both of which play an important part

in limiting viral replication.79,80 IFN‐γ is the main type II IFN and con-

tributes to the establishment of an effective adaptive cytotoxic T‐cell

response against influenza virus infections.81 Type III IFNs, like IFN‐λ,

are reported to control influenza A infections of the lung.82

Besides, activated macrophages enhance their proinflammatory

cytokine response (interleukin [IL] 6 and tumor necrosis factor
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[TNF] α).83,84 Alveolar macrophages have a direct role in limiting the

spread of virus through phagocytosis of apoptotic infected cells85,86

and by phagocyte‐mediated opsonophagocytosis of influenza virus.87

In contrast to these beneficial effects, alveolar macrophages also pose

a negative effect, since their activation also results in the production

of nitric oxide synthase 2 and TNF‐α, which in turn results in severe

pathological symptoms from influenza virus infections.88-90

Food‐derived flavonoids, in particular quercetin, critically modulate a

variety of inflammatory processes and immune functions as widely

researched and reviewed.91-93 Recent reports ascertain that quercetin

reduces inflammatory cytokine levels, whereby expressions of IL‐1β,

IL‐4, IL‐6, and TNF‐αmRNA and protein were markedly downregulated

in rats treated with quercetin.94 These inferences suggest that the ben-

eficial immunostimulatory effects of quercetin may be mediated

through the induction of T helper cell 1–derived cytokine, IFN‐γ, and

inhibition of T helper cell 2–derived cytokines, IL‐1β, IL‐4, IL‐6, and

TNF‐α.95-97
3.5 | Quercetin impact on virus‐induced cellular
oxidation

Influenza infection highly enhances reactive oxygen species (ROS) gen-

eration in host cells.11 A higher level of ROS generation increases viral

pathogenesis in vitro and in vivo.98 Moreover, researchers have found

that influenza virus–induced ROS produces systematic symptoms such

as weight loss and body temperature changes.99 Additionally, they

reported that natural compounds were successful in reducing influenza

viral titer by approximately 50% owing to their antioxidant proper-

ties.100 Some researchers claim that the oxidation of the conserved

tryptophan 153 residue in the receptor‐binding site inactivates influ-

enza HA binding using chlorine dioxide.101 Quercetin has a higher

reduction potential both in vivo and in vitro.102 This implies that

quercetin is able to block influenza HA through antioxidant proper-

ties.103-106 Gansukh et al reported that quercetin derivatives extracted

from Dianthus superbus exhibited inhibitory effect on influenza virus–

induced ROS production and subsequently it inhibits viral infection

during early stages of binding, fusion, and replication.11 Additionally,

Enkhtaivan et al reported a strong correlation between antioxidant

and anti‐influenza agents from Hippophae rhamnoides L. extracts.107

They have reported that quercetin and quercetin monoglucoside are

effective in vitro inhibitors on both oxidant and influenza infections

by reducing virus‐induced cytopathic effects.107 Researchers have

concluded that quercetin's antiviral activity is a result of a variety of

multiple actions. Some of the primary mechanisms may include one

or more of the following: (1) reducing the ability of a virus to infect

cells (infectability),108 (2) inhibiting the ability of infected cells to repli-

cate and reproduce,108 and (3) reducing resistance of infected cells to

pharmaceutical drug therapy.109 It is reported that within each of these

categories, quercetin has demonstrated (in vivo) chemical interactions

of multiple cellular pathways that inhibit or promote the production

of critical viral proteins. The basic effect of quercetin's multifaceted

interference could be to block viral activity at every possible level of

its existence. Thus, it is certainly a potentially powerful neutraceutical

therapy, which could be put to promising and effective use.
3.6 | Challenges and future perspective for quercetin
in anti‐influenza strike

One of the major challenges that quercetin faces when put to clinical

use is its poor water solubility, instability in physiological media,110

and subsequent poor bioavailability.111 Thus, optimizing ideal drug

(quercetin), delivery options are necessary to facilitate the harnessing

of maximum benefits from quercetin. Moreover, quercetin is a versa-

tile compound that can trigger off a number of responses to its active

interaction once inside the human system. Hence, before beginning a

full‐fledged application routine, it is necessary that all the interactions

and pros and cons in vivo are completely researched. Current research

on some interactions have revealed that there is concern that querce-

tin may reduce the effectiveness of certain antibiotics.112-115 Querce-

tin may render corticosteroids staying longer in the body. Quercetin

may interfere with the body's absorption of cyclosporine, which is used

to suppress the immune system.113 Concomitant use may increase the

risks of digoxin and fluoroquinolones. Quercetin is suspected to

enhance the effect of anticoagulants, increasing risk of bleeding. Test

tube and animal trials suggest that quercetin may enhance the effects

of doxorubicin and cisplatin, which are 2 chemotherapy medications

used to treat cancer.112-115 Quercetin is generally considered safe.

Side effects may include headache and upset stomach. Preliminary evi-

dence suggests that a by‐product of quercetin can lead to a loss of pro-

tein function. Moreover, very high doses of quercetin may damage the

kidneys. Periodic breaks from taking quercetin are highly recom-

mended. In addition, pregnant women, breastfeeding women, and peo-

ple with kidney disease should avoid quercetin. At doses greater than

1 g per day, there have been reports of damage to the kidneys.116-118

These uncertainties and established and silent threats are the lim-

itations facing the harnessing of the complete benefits of this bioflavo-

noid. Thus, it is crucial that quercetin is not let loose into the system

but delivered through targeted drug delivery carriers. Targeted deliv-

ery can be actively or passively achieved. Active targeting is by conju-

gating the therapeutic agent or carrier system to a tissue or cell‐

specific ligand.119 Passive targeting is said to be achieved by incorpo-

rating the therapeutic agent into a macromolecule or nanoparticle that

passively reaches the target. Thus, drugs encapsulated within nanopar-

ticles or drugs coupled to macromolecules can passively target specific

viral cells through the enhanced permeability and retention effect. In

this direction, liposomes have been demonstrated to be useful for

delivering pharmaceutical agents, via “contact‐facilitated drug deliv-

ery,” which involves binding or interaction with the target cell mem-

brane. Biodegradable polymeric micelles are regarded as excellent

candidates for anticancer drug delivery. Anticancer drugs delivered

by amphiphilic polymer micelles are already documented,120,121 and

more recently, polymer micelles have been used for quercetin formula-

tion too.122 The polymer micelles have been reported to have

enhanced the oral bioavailabilty of quercetin too.123 Thus, numerous

approaches are underway involving the use of promising drug delivery

systems such as inclusion complexes, liposomes, nanoparticles, or

micelles, which appear to provide higher solubility and bioavailability

to combat quercetin's limitations.

Yet another interesting offer is from topical prodrugs that are

obtained by chemical modification of a drug into a bioreversible form
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to improve drug bioavailability and therapeutic efficacy. Upon adminis-

tration, regeneration of the parent drug occurs in vivo by either enzy-

matic or chemical processes.124 Quercetin‐amino acid conjugates,

QC‐3,5,7,3,4‐pentamethylether, QC‐3‐O‐acyl esters (I‐VI), and QC‐

polymethacrylic acid conjugated quercetin‐based prodrugs, have been

synthesized and demonstrated for their enhanced pharmacokinetic

properties including water solubility, stability against chemical or enzy-

matic hydrolysis, and cell permeability.124-126

A recent researcher has described that sugars on quercetin deriv-

atives are highly correlated with their anti‐influenza and anticancer

effects.107 Depending on the correlation between metabolites and bio-

logical activities, aglycones and monoglycosides are better targets in

influenza viral drug development while diglycoside and triglycoside

are involved in inhibiting the growth of cancer cells.107 Moreover,

monoglycoside of quercetin (quercetin 7‐glucoside) has been proved

as influenza PB2 polymerase subunit blocker tested in vitro and in

silico.

In a more recent review Cai et al127 have surveyed the wholesome

options available for solving the bioavailability issues of quercetin.

They report an excellent compilation of accomplishments attained via

quercetin inclusion complexes,110,128 quercetin nanocrystals,129,130

quercetin microemulsions,131 quercetin phospholopid formulations,132

and encapsulated polymer nanoparticles and micelles.133-137 This

review finds it interesting that most of these quercetin exultations

are yet to be tested and applied in real time. This review calls to atten-

tion the available expertise and solutions offered to promote querce-

tin, which is a testing away from being launched as a successful drug.

This review also finds ample gaps between reports on quercetin

and clinical testings, most of the information on the side effects and

interactions and adverse effects remain on websites and private

domains and not on scientific publications or authentic science

engines. Nature's nominee is still unnominated, this review is expected

to be a wake‐up call for researchers to put to test the clinical expertise

of quercetin and the claims of enhanced quercetin modifications in real

time. To unleash what quercetin holds, it is required that limitations are

overcome and recent advancements made are put to trial.
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